Pseudomonas aeruginosa: distribution and antibiotic profile of one of the ESKAPE pathogen

  • Dr. Mowna Karthick Lab Specialist, Dr. Sulaiman Al Habib Hospital, Riyadh, Saudi Arabia.
Keywords: Antimicrobial resistance, Carbepenems, Fluoroquinolones, Pseudomonas aeruginosa

Abstract

Background: Pseudomonas aeruginosa is an opportunistic gram-negative pathogen known for its ingenious mode of infection. The management of infections with Pseudomonas has been quite a challenge. The bacteria have intrinsic resistance against most of the routine antibiotics. Such a scenario places the health care delivery system at a challenging end point with very minimal options of care and increased rates of morbidity and mortality. This study was done to assess the pattern of presentation of Pseudomonas aeruginosa in hospital settings.

Methods: This cross-sectional study was carried out among 280 specimens which were isolated for a period of 17 months in our tertiary care hospital. The blood culture bottles were placed in Bac T/ Alert 3 D and the positive culture bottle was processed by Grams stain and in routine bacteriological media for inoculation and incubated. Pseudomonas aeruginosa organisms isolated from all the clinical samples were subjected for determining the identification and antibiotic susceptibility profile by VITEK 2 and manual methods.

Results: A total of 280 samples were analyzed in this study. The background characteristics of the specimens analyzed is given in table 1. In this study, majority of the samples were from inpatients (71.4%). Among the total samples, most specimens were urine samples (37.5%), followed by pus (23.1%). The organisms showed high sensitivity to Amikacin, Ceftazidime and Gentamycin (98%).

Conclusion: From the present findings, we understand that Amikacin and Gentamycin can be the proposed drug of choice for severe infections with Pseudomonas aeruginosa.

Downloads

Download data is not yet available.

References

1. Pathogen Profile Dictionary. Available from https://www.ppdictionary.com/bacteria/gnbac/aeruginosa.htm

2. Pollack M. Pseudomonas aeruginosa. Priciples and preactioce of infectious disease. 1995:1980-2003.

3. Pragasam AK, Raghanivedha M, Anandan S, Veeraraghavan B. Characterization of Pseudomonas aeruginosa with discrepant carbapenem susceptibility profile. Ann Clin Microbiol Antimicrob. 2016;15:12. doi: 10.1186/s12941-016-0127-3.

4. Queenan AM, Shang W, Flamm R, Bush K. Hydrolysis and inhibition profiles of beta-lactamases from molecular classes A to D with doripenem, imipenem, and meropenem. Antimicrob Agents Chemother. 2010;54(1):565-569. doi: 10.1128/AAC.01004-09. Epub 2009 Nov 2.

5. Livermore DM. Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother. 2001;47(3):247-250. doi:10.1093/jac/47.3.247

6. Almaghrabi R, Clancy CJ, Doi Y, Hao B, Chen L, Shields RK, et al. Carbapenem-resistant Klebsiella pneumoniae strains exhibit diversity in aminoglycoside-modifying enzymes, which exert differing effects on plazomicin and other agents. Antimicrob Agents Chemother. 2014;58(8):4443-4451. doi: 10.1128/AAC.00099-14. Epub 2014 May 27.

7. Ku K, Pogue JM, Moshos J, Bheemreddy S, Wang Y, Bhargava A, et al. Retrospective evaluation of colistin versus tigecycline for the treatment of Acinetobacter baumannii and/or carbapenem-resistant Enterobacteriaceae infections. Am J Infect Control. 2012;40(10):983-987. doi: 10.1016/j.ajic.2011.12.014. Epub 2012 Mar 21.

8. Chander A, Raza MS. Antimicrobial susceptibility patterns of pseudomonas aeruginosa clinical isolates at a tertiary care hospital in Kathmandu, Nepal. Asian J. Pharm. Clin. Res 2013;6(Suppl3):235–238.

9. Djordjevic Z, Folic MM, Zivic Z, Markovic V, Jankovic SM. Nosocomial urinary tract infections caused by Pseudomonas aeruginosa and Acinetobacter species: sensitivity to antibiotics and risk factors. Am J Infect Control. 2013;41(12):1182-1187. doi: 10.1016/j.ajic.2013.02.018. Epub 2013 May 29.

10. Bassetti M, Vena A, Croxatto A, Righi E, Guery B. How to manage Pseudomonas aeruginosa infections. Drugs Context. 2018;7:212527. doi: 10.7573/dic.212527. eCollection 2018.

11. Mittal R, Aggarwal S, Sharma S, Chhibber S, Harjai K. Urinary tract infections caused by Pseudomonas aeruginosa: a minireview. J Infect Public Health. 2009;2(3):101-111. doi: 10.1016/j.jiph.2009.08.003. Epub 2009 Sep 19.

12. Lamas Ferreiro JL, Álvarez Otero J1, González González L, Novoa Lamazares L, Arca Blanco A, Bermúdez Sanjurjo JR, et al. Pseudomonas aeruginosa urinary tract infections in hospitalized patients: Mortality and prognostic factors. PLoS One. 2017;12(5):e0178178. doi: 10.1371/journal.pone.0178178. eCollection 2017.

13. Golia S, Suhani, Manasa S, Jyoti. Isolation of Pseudomonas aeruginosa from various clinical isolates and it antibiotic resistance pattern in a tertiary care hospital. Int J Curr Microbiol App Sci 2016;5(3):247-253. doi: http://dx.doi.org/10.20546/ijcmas.2016.503.030

14. Javiya VA, Ghatak SB, Patel KR, Patel JA. Antibiotic susceptibility patterns of Pseudomonas aeruginosa at a tertiary care hospital in Gujarat, India. Indian J Pharmacol. 2008;40(5):230-234. doi: 10.4103/0253-7613.44156.

15. Livermore DM. Of Pseudomonas, porins, pumps and carbapenems. J Antimicrob Chemother. 2001;47(3):247-250. doi:10.1093/jac/47.3.247

16. Hall RM. Mobile gene cassettes and integrons: moving antibiotic resistance genes in gram-negative bacteria. Ciba Found Symp. 1997;207:192-202; discussion 202-205. doi:10.1002/9780470515358.ch12

17. Lee YJ, Liu HY, Lin YC, Sun KL, Chun CL, Hsueh PR. Fluoroquinolone resistance of Pseudomonas aeruginosa isolates causing nosocomial infection is correlated with levofloxacin but not ciprofloxacin use. Int J Antimicrob Agents. 2010;35(3):261-264. doi: 10.1016/j.ijantimicag.2009.11.007. Epub 2009 Dec 31.

18. Fujii A, Seki M, Higashiguchi M, Tachibana I, Kumanogoh A, Tomono K. Community-acquired, hospital-acquired, and healthcare-associated pneumonia caused by Pseudomonas aeruginosa. Respir Med Case Rep. 2014;12:30-33. doi: 10.1016/j.rmcr.2014.03.002. eCollection 2014.

19. El Zowalaty ME, Al Thani AA, Webster TJ, El Zowalaty AE, Schweizer HP, Nasrallah GK, et al. Pseudomonas aeruginosa: arsenal of resistance mechanisms, decades of changing resistance profiles, and future antimicrobial therapies. Future Microbiol. 2015;10(10):1683-1706. doi: 10.2217/fmb.15.48. Epub 2015 Oct 6.

20. Lila G, Mulliqi G, Raka L, Kurti A, Bajrami R, Azizi E. Molecular epidemiology of Pseudomonas aeruginosa in University Clinical Center of Kosovo. Infect Drug Resist. 2018;11:2039-2046. doi: 10.2147/IDR.S174940. eCollection 2018.

21. Domitrovic TN, Hujer AM, Perez F, Marshall SH, Hujer KM, Woc-Colburn LE, et al. Multidrug resistant Pseudomonas aeruginosa causing prosthetic valve endocarditis: a genetic-based chronicle of evolving antibiotic resistance. Open Forum Infect Dis. 2016;3(4):ofw188. doi: 10.1093/ofid/ofw188. eCollection 2016 Oct
CITATION
DOI: 10.17511/jopm.2019.i09.10
Published: 2019-09-30
How to Cite
Karthick, M. (2019). Pseudomonas aeruginosa: distribution and antibiotic profile of one of the ESKAPE pathogen. Tropical Journal of Pathology and Microbiology, 5(9), 678-683. https://doi.org/10.17511/jopm.2019.i09.10
Section
Original Article